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I. INTRODUCTION

Investigators in many fields are often confronted with research
problems in which a large number of factors (i.e., independent var-
iables) must be considered. In such cases the first step in experi-
mentation is usually the identification of the most important factors,
so that future research may be concentrated on the major factors.
Accordingly we often want to conduct an efficient preliminary screening
experiment aimed at determining the subset of important factors.,

One resource-efficient screening strategy is two-stage group
screening. In this method, introduced by Watson (1961), the individ-
val factors (each at two levels) are partitioned into groups, forming
group factors. By assigning the same level to all componenet factors
within each group, the group factors are tested as if they were single
factors. All factors within groups found to have significant effects
are then tested individually in a second-stage experiment.

A key assumption in Watson's development of group screening is
that the directions of all effects are known or can be correctly assumed,
a priori. With this assumption, factor levels can be assigned so that
all effects are in the same direction. Thus, there is no chance
of cancellation of effects (within a group). This assumption, how=-
ever, is unlikely to hold exactly in practice. Consequently one
may hesitate to use a group screening design because important effects
may cancel if assumed effect directions are wrong.

In a previous paper, we [Mauro and Smith (1982)] examined the

extent to which cancellation affects the performance of two-stage
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group screening designs when the response is observed without random
error (i.e., when the error standard deviation ¢ is equal to zero).

In the present paper we extend this work to the case 0 > 0. As part
of our investigation we have developed a computer-aided search routine
to seiect an optimal (in a sense to be defined later) group screening
i plan. As in our earlier paper, we use the multifactorial designs of

Plackett and Burman (1946) to analyze the results of the first and

second stages.




~—

IT. ASSUMPTIONS AND NOTATION

Suppose K factors are to be screened for their effects on the
response. For detecting the factors having major effects, it is
usually sufficient to assume a first—order model:

K

=B + XBx,, +te,, (2.1)

y .
SIS & i

where Y; is the iEh response, BO is a constant term common to every

response, Bj (3 3_1) is the linear effect of the jEE factor, x *]

1y
is the level of the th factor in the i—t--tl run, and € is the iEﬁ

error term. We make the following additional assumptions:

1. k > 1 (k unknown) of the K factors are active (i.e.,
have a true effect) and (K-k) are inactive,

2. all active factors have the same absolute effect,
A > 0, that is,

fa, 1f factor j is active
8,1 =
J 0, if factor j is inactive,
3. the error terms {g¢,} are independent and normally
distributed with méan zero and unknown variance 0°.
We let E(i) for i=0,1,2,...,k denote the effects arrangement in
which i effects equal -A, (k-i) effects equal +A, and (K-k) effects

equal 0. The B(0) [or B(k)] case, therefore, corresponds to the

situation where all active effects are in the same direction. Further-

more, in the version of two-stage group screening we consider, we

assume that the K factors are partitioned randomly into G groups of

size g; if K 1s not a multiple of g, we assume that the group sizes
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are taken as "evenly" as possible, Concerning our assumptions, we
note that random grouping and equal absolute effects maximize the
chance of cancellation. Thus, with regard to studying the cancell-
ation effect, our assumptions define 'worst case' conditions.

For reasons of economy and to avoid design saturation (i.e.,
no degrees of freedom to estimate 0), we employ at both stages of
screening the smallest Plackett-Burman (PB) design that has at least
one error degree of freedom. Since PB designs are only available
for numbers of runs that are multiples of four, the number of first-

stage runs N, required to test the G group factors will therefore

1
be B(G+1) where

B(x) = x + 4 - x(mod 4). (2.2)

Similarly, if S denotes the number of factors that reach the second

stage, then the number of second-stage runs N, will be B(S+1). Thus,

2

the total number of runs R required by both stages of group screening

will be N1 + N2 = B(G+1) + B(S+1). We note that because S is random,

so is R.

Regarding formal significance testing, the results of the first
and second stages can be analyzed by the usual analysis of variance
procedures for factorial experiments. We denote the significance
levels of the (two-sided) t tests performed at the end of the first
and second stages by %y and Ons respectively. Our version of two-

stage group screening, therefore, is completely determined by g,

A and a Accordingly, we will denote such a strategy by

2.
GS(g, al, az). In the next section we show how the quantities g,

a,» and g_ affect the performance of the GS(g, o o,) strategy,
1 2 2 Y

1’
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I1I, PERFORMANCE EVALUATION

We can define three separate measures of performance. These
are:

Power, We denote by A the number of active factors that
are detected correctly, and we define

EA = 100E(A) /k (3.1)

as a percentage measure of the "power'" of a GS strategy
for detecting the active factors.

Type I Error. We denote by U the number of inactive
factors that are declared active (important), and we define

EU = 100E(U) / (K-k) (3.2)

as a percentage measure of Type I error (i.e., declaring
active an inactive factor).

Relative Testing Cost. We define relative testing cost

ER = 100E(R) /B(K+1) (3.3)
as the ratio,expressed as a percentage, of the expected
number of runs required by a GS strategy to the number of
runs required by the smallest PB design for K factors that
has at least one error degree of freedom.

A’ a smaller value of EU’ or a smaller value

of ER indicates better performance on the average, but all three mea-

A larger value of E

sures should be considered in assessing and comparing the performance

of GS(g, al, az) strategies, In general, selecting a suitable GS(g,
aps az) strategy will require that trade-offs be made between EA’ EU,
and E,. In many ways our problem is like the testing of a statistical

R
hypothesis in which we want the sample size (relative testing cost)

and Type 1 error to be small but the power to be large.
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In the Appendix we derive the expected values of A, U, and R for
any K, k,-g(i), g, al, az, and signal-to-noise ratio A/0 . Using these
results we developed a computer program that gives the performance

properties of alternative GS(g, o., az) strategies. To illustrate its

1

use, we applied our program to two case studies, which we will refer

to as Study A and Study B. In Study A we evaluated E,, E , and ER

AU
when K=60, k=8, A/o= 1,3,~ and B = 8(0), B(4) for g=3 and 6, al=.01,
.05, .10 and u2=.01, .05, .10 . 1In Study B we evaluated EA, EU, and
ER when K=240, k=32, A/o =1, 3, « and B = §ﬁ0),§ﬂ16) for the same g,
Qs Oy combinations considered in Study A. We chose to consider just
the B(0) and B([k/2]) cases because of the symmetry between the B(i)
and B(k-i) arrangements. Moreover, the probability of group-factor
effect cancellation is maximized in the B([k/2]) case. The results
obtained for Studies A and B are shown in Tables 1A and 1B, respectively.
In Tables 1A and 1B we give the limiting values of ER’ EA, and EU
as A/o » = (0>0). We note that these results are not directly com-
parable to those given by Mauro and Smith (1982) under the assumption
that 0=0. The zero and nonzero error cases are fundamentally different
since when 0=0 the testing process is totally deterministic.
It is intuitive that an increase in al or a, will increase both
EA and EU. An increase in a will also increase the expected number
of runs made, thus the relative testing cost ER. However, ER does
not depend on az, a fact that will be important to us in later discussion.

The actual extent of these movements for our two case studies can be

seen from Tables lA and 1B,
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We can further add that as u, + 0, the probability of detecting

1
any grour effect approaches zero. Thus, in this case, EA - 0, EU -+ 0,
and ER + 100y, where y = B(G+1)/B(K+1). As o + 1, all groups will

be found to have a significant effect with probability one, in which
case the second stage simply becomes a PB experiment for all K factors

in B(K+l) runs; thus, E_+a,, E_+ ¥_, and ER + 100(1+y), where Y

U 2 A PB PB

is the corresponding power for detecting an effect of magnitude A&
in the associated PB design. Corresponding limits as az + 0 or 1 are
less interesting.

As noted in Tables 1A and 1B, performance values enclosed by
parentheses were obtained in the B({k/2]) case; those directly preceding
the parentheses are corresponding values that were obtained in the E(O)
case, Any differences between these values, therefore, are due to the
cancellation effect. Since the chance of canc 1llation is zero in
the 3(0) case and at a maximum in the E([k/Z]) case, these differences
specify the maximum effect of cancellation on performance.

An examination of the results shows that of the three performance
measures considered, EA is the most sensitive to the cancellation
effect. In some of the cases ccnsidered E[A] B({k/2))] is 70% of
E[A] £(0)]. Further, although we would tend to use fewer runs as
the chance of cancellation increases [eq_.ivalently, as i increases
from 0 to [k/2] in E(i)], this apparent advantage is offset by the
fact that we would also tend to detect fewer active factors.,

In Studies A and B the proportion of factors that are active

(i.e., k/K) is the same. Mauro and Smith (1982) found that in the

deterministic case (0=0) power and relative testing cost are




e A——————

essentially a function of k/K and B(i/k). Inspection of Tables
1A and 1B clearly shows that this result does not hold when 0 > O,
Thus, in this case, it will be necessary to consider each (K,k)
combination separately.

An important practical consideration in the use of a GS strategy
is the number of error degrees of freedom (e.d.f.) for testing group
effects in the first stage. For testing G groups in a PB design
having B(G+1) runs, e.d.f. = B(G+l) -(G+1), and thus, 1 < e.d.f. < 4,
When e.d.f. = 1 the efficiency of the PB design can be extremely poor.
See, for example, the case with K=60 and g=6 in Table lA. In such
cases a more reasonable strategy may be to employ a larger PB design
or to use one less group and partition the factors as "evenly" as
possible. Such considerations would also apply in the second stage
where e.d.f, = B(S+1) - (S+1). At this stage, however, a reasonable
alternative for increasing e.d.f. may be to combine effects into a
pooled error estimate.

We make one final observation. Tables 1A and 1B suggest that

E 1is directly proportional to a, in a GS(g, &

U . az) strategy. Indeed,

2 1

using (A.2) and (A.5) in the Appendix, we see that

Ey = IOO*QZ*P {an inactive factor reaches the second stage} (3,4)

We will make use of this fact in the next section.

-10~




1V. SEARCH ROUTINE

To select a GS strategy, the experimenter must specify the group

size g and the significance levels of the first and second stage tests,

oy and aye In general there are no obvious choices for g, s and Oy In

order to choose the best strategy for a particular application, trade-

offs will need to be made between ER’ EA’ and E In this section we

U
present a computer—aided search routine to help select a "good" GS
strategy. The search program is written in standard FORTRAN and is
available upon request from the authors.

In order to use the search routine, the experimenter must first

specify a maximum tolerable relative testing cost, say EE, and a maximum

* *
< ER and EU < EU’ the

search algorithm determines, for various group sizes, the values of

tolerable Type I error, say EG. Subject to ER

oy and o, that maximize power (EA). From the program output, the group
size which gives the greatest power may then be selected. The basic
steps in the search algorithm are outlined in Table 2.

Step 4 of the algorithm makes use of the fact the E_ is an increasing

R

function in o, and does not depend on o The a, defined by Step 5 can

2° 2
be quickly determined from (3.4). Further, the overall logic of the al-

1

gorithm is based on the premise that power increases as relative testing
cost increases.

Table 3 containes sample computer printout from the search routine
for the case K=60, k=8, A/o=2, E§=SOZ, and Eﬁ=5%. Asterisks appearing
in the printout signify a case (i.e., group size) in which the value of

ER at al=0 equals or exceeds Ea. In Table 3, for instance, when g=2

-11-




Step 1. Input values for K, k, and A/O .

Step 2. Input maximum tolerable values for ER and EU.
Step 3. Assume (R(0) case and g=2. ]
Step 4. Determine o, so that ER attains maximum allowable value. |
Step 5. For the a, determined in Step 4, determine the o

that maximizes EU subject to constraint specifieg

in Step 2. 1
Step 6. Calculate EA and EU for given GS(g,al,az) strategy.
Step 7. Repeat Steps 4, 5, and 6 as long as g < min(8, K/2).
Step 8. Reset g=2 and repeat Steps 4 through 7 for B([lk/2])

case,

Table 2. Outline of Two-Stage Group Screening
Search Algorithm

-12-
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the first-stage PB experiment requires 32 runs, thus leaving no runs
available for the second-stage follow-up experiment.

The search routine is based on the performance results derived in
the Appendix, which are only applicable when K is a multiple of g. There-
fore, for group sizes where this restriction is not met, the program re-
defines K as the nearest multiple of g and denotes the new value as KSTAR.
Performance results are then calculated as if there are KSTAR factors to
be screened, 1t seems reasonable that these results should be comparable
to the true performance had the K factors been partitioned as "evenly"
as possible,

As a final observation, we note that if the group sizes considered
in Table 3 are ranked according to their corresponding power, the ranking
is the same in the §(O) and E(é) cases. We have found this phenomenon to
be generally true for the different cases we have looked at., Creater
power, of course, is attained in the §(0) case, when no cancellation can
occur.

The search routine presented in this section provides guidance in
using and selecting a satisfactory GS strategy. The routine supplies the
user with quantitative information needed to determine whether two-stage

group screening is suitable for a particular application.
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V. SUMMARY AND REMARKS

In this paper we examine the performance characteristics of two-
stage group screening experiments, extending the previous work of Mauro
and Smith (1982). The analysis in Section III indicates the extent to
which the choice of group size and of the significance levels of the
first and second stage tests affect performance. We evaluate perfor-
mance as a function of a constant signal-to-noise ratio for all active
(i.e., nonzero) factors, assuming random grouping and a first-order
model.

In screening experiments an experimenter may hesitate to use group
screening because important effects may cancel if not all effect di-
rections are known. A key feature in our development is that we make
no presumption concerning effect direction, only effect magnitude. 1In
fact, the assumptions of random grouping and equal absolute effects
define "worst case" conditions with regard to possible cancellation of
effects.

In general, the efficacy of group screening in a given application
must be based on trade-offs between factor classification and testing
cost, To facilitate this process we have developed a computer-aided
search routine which addresses this problem. The results of this paper
can be used as a practical guide in decisions about the possible use

and choice of a two-stage group screening strategy.
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APPENDIX

Part 1. Introduction

Without loss of generality, let B(i) denote the case in which

BI=B‘="‘=81= -4, B B

2 =.--=Bk= +A ’ and Bk+1=8k+2=ooo=BK=00

i+1 Pi+42

Suppose that K=gG where g denotes the group size and G denotes the
number of groups. We define A and U as in (3.1) and (3.2). We

now define

1, if the th factor is in a group that
shows a significant effect in the
R.. = first stage
13
0, otherwise

1, if the th factor shows a significant

R effect in the second stage
23

0, otherwise.

In a GS(g, O, , az) strategy, the jEE factor is declared important

1
only if both R1j=1 and R2j=1' Accordingly, we define Dj=R1jR2j and
observe that A = £ D, and U=% D,. The number of factors S that
y<k 3 >k 3 K
reach the second stage is given by S = I le.
1=1

Because of symmetry we can write

E[A]B(1)] = iE[D |B(D)] + (k-D)E[D,, |B(H)]
= {E[D [B(D)] + (-DE[D |B(=D)]).  (A.D)
Similarly
E[U]B(1)]) = K-KE[D, ., |B(D)], (A.2)
-16~-




E[S[8(1)] = 1E[R}, |B(1)] + (k-1)E[R|, |B(k-1)]

+ (K-k)E[R 18(1)]. (A.3)

1,k+l

Further,

E[D, [B(1)] = PIR =1|B(1)IP[R,,=1|R; =1,B(1)],  (A.4)
and

E[D, ., [B(D)] = PIR) 1 41=HB(D ]a,. (A.5)

Thus, to evaluate the expectations of A, U, and S it suffices to

evaluate P[R1j=1|§(i)] for j=1 and j=k+l and evaluate P[R2j=1[le=1, B8(1)]
for j=1.
Regarding the expected total runs,
E(R) = B(G+l) + E[B(S+l)] . (A.6)
Using the approximation B(x) = x+2.5, we have
E[R|B(4)] = B(G+l) + 3.5 + E[S[B(1)]. (A7)

Note that lB(x) - (x+2.5)| < 1.5.

Part 2. Derivation of the Probability that an Active Factor Reaches
Second Stage

Without loss of generality suppose that factor #1 is placed into
group #1 and assume that 1<i<k. Now, given that factor #1 (Bl= =-A)
is placed into group #1, there are (i-1) effects of -A, (k-i) effects
of +A, and (K-k) zero effects left to be distributed into groups.

We define

¥(n;830) = P{|T_(8)[> t(n;a/2)} (A.8)

-17=-
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where Tn(d) denotes a random variable having a noncentral t distribution
with n degrees of freedom and noncentrality parameter §, and where
t(n;a/2) denotes the upper 100(l-a/2) percentage point of "Student's"

t distribution with n degrees of freedom,

It is not difficult to see that

J M
P[R11=1|§(i)] =1L I P(jsm)w(fl;é(j,m);al), (A.9)
j=0 m=0

where J = min(g~-1l, i-1), M = nin(g-1-j, k-1), fl = NI—G—l, Nl = B(G+1),

§(j,m) = vﬁ1 (m-3-1)A/0, and

i-1) [ k-1 K~k [ k-1

p(jem) = 3 . (A.10)

m g=l=j-m g-1

The quantity p(j,m) defined in (A.10) is the probability that j effects
of -A and m effects of +A fall into group #1 along with factor #1,

The ¥ quantity appearing in (A.9) is the power of the t~-test associated
with group #1 given that (j+1) effects of -A , m effects of +A , and

(g-1-j-m) zero effects are placed in group #1,

Part 3. Derivation of the Probability that an Inactive Factor Reaches
Second Stage

To derive P[R =1[§(i)] we can repeat the argument of Part 2

1,k+l1
for the (k+l)st factor (Bk+1=0)' Doing so, we obtain
J* M*

s1|_B_(i)] = I I P*(Jam)w(flié*(j,m);al): (A.11)
j=0 m=0

P[Rl,k+1

where J* = min(g-1,1), M* = min(g-1-j, k-1), 8*(j,m) = vﬁi(m-j)A/o, and

~18-




g=l1-j-m } i g-1 ; (A.12)

Part 4. Derivation of the Probability that an Active Factor that
Reaches Second Stage is Declared Important
We let H denote the number of groups in the first stage that show
a significant effect. Note that S=gH, so that E(H) = E(S)/g. The
expected value of S can be ccmputed per (A.3), (A.9), and (A.ll).

We can write

PIR,,=1[R,;=1,8(i)] = P[H=h|R, =1,8(1) IP[R, =1[H=h, R ,=1,B(1)] .

[ e W 5]

h=1

(A.13)
The second factor within the summation in (A.13) can be evaluated as

P[R, =1H=h, R =1,8(1)] = ¥(f,(h);¢,(h);0,) (A.14)

where fZ(h)= B(hg+l) - (hg+l) and 62(h) = —[B(hg+1)]2 Afa. The

conditional distribution of H given R, =1 and E(i) is intractable,

11
however. The authors have found that the conditional distribution of
H required in (A.13) can be reasonably approximated as Y+l where Y is
a binomially distributed random variable with parameters (G-1) and
success probability ;» = E(H)/G = E(S)/K. Thus

G

PR, =LIR =13 ()] ?hil P(Y=h=1)#(f, (h);6,(h);a,) (A.15)

where Y  bh(G-1;.").
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